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Abstract

A simplified model for prediction of dynamic damage and fracture of ductile material has been proposed. The plastic

flow of matrix and the void growth are dealt with separately after we show that two separated loading sub-surfaces and

corresponding normality rules for matrix and damage exist. The equation of the loading sub-surface for the matrix

plastic flow is derived by the means of introducing a mapping damage-free solid of matrix material, whose constitutive

relation is supposed to have been determined via Hopkinson bar experiments. Based on the results of recovered

experiments the law of damage evolution is phenomenally established. The model has been applied to predict some spall

experiments carried out on tantalum, and results show it predicts the experiments very well.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic damage and fracture occurs in a wide range of technologically important applications, for
examples: high-speed machining, crash-worthiness of vehicles, armor penetration, striking of dust particles

on aerospace vehicles and satellites. It has long been recognized that in the cases of dynamic loading

conditions the material behaves are different with those under static loading conditions. Under static

loading, the failure or fracture of materials was demonstrated to be the consequence of fatigue and the

propagation of pre-existed macro-scale cracks (Lawn, 1993). In contrast, dynamic failure and fracture of

materials was observed to result from the accumulation of damage that is characterized by the nucleation,

growth and coalescence of microcracks and microvoids (Seaman et al., 1976; Curran et al., 1987). So
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modeling of the response of materials under dynamic loading is, in fact, a multi-scale problem. In order to

link micro-damage, macro-deformation and the final failure of materials, Kachanov (1958) put forward the

concept of internal variable of damage, which was defined as the relative area of voids in a cross section.

The significance of this concept is that it enables us to study the mechanic properties of damaged materials
with continuum theories. In 1970s the concept was widely accepted and extended to describe the dynamic

behaves of materials under high rate loadings such as explosions and high-velocity impactions. Afterwards,

numerous models have been proposed, for example, Davision and Stevens (1972, 1973), Seaman et al.

(1976), Curran et al. (1987), Johnson (1981), Steinberg et al. (1980, 1989), Johnson and Addessio (1989),

Perzyna (1986a,b), Rajendran et al. (1989, 1991), Krajcinovic (1989, 2000), Bai et al. (1991, 1992, 1997,

2000), Wang (1997), Hansen and Schreyer (1994), Cauvin and Testa (1999), Li (2000), Clifton (2000),

Ireman et al. (2003) and Rashid et al. (2003). For review papers, one can refer to Voyiadjis et al. (2002),

Meyers (1994) and Curran et al. (1987) as examples. Although plenty of models have been proposed, it has
been found that the prediction of material response to dynamic loading is also insufficient, further works

are required.

In this paper, we will present a novel practical model for prediction of dynamic damage and fracture of

ductile materials. But prior to all, we will first show that there exist two separated loading sub-surfaces and

corresponding normality rules for the matrix plastic flow and the damage evolution. The advantage of the

separation is that it makes the frame of the model applicable for both ductile and brittle materials. In

addition it allows us to change the kinetic equations for the damage evolution and the matrix plastic flow

without a large amount of modification of the codes. Next in our paper, the frame of our model will be
presented. After that, the rate-dependent loading sub-surface for the matrix flow will be introduced and the

equation of evolution of damage will be developed. At last some examples of simulation of plate impacting

experiments will be exhibited and a summary will be given.
2. Existence of separated sub-surfaces for the matrix plastic flow and the damage evolution

In elastic–plastic mechanics, there is a basic rule, i.e., the normality rule, which is resulted from the

Drucker’s postulate (1952). In fact, for a dissipative mechanic system Li (1999) on the view of thermo-

dynamics demonstrated that there exists a general normality rule between any thermodynamic strain and

thermodynamic stress. So in the damage and plastic deformation coupled dissipative system, the following
equation holds
deirij ¼ dk
o/
orij

; ð1Þ
where deirij ði; j ¼ 1; 2; 3Þ are the increments of the components of total irreversible strain; dk is a positive
parameter; rij ði; j ¼ 1; 2; 3Þ are the components of stress tensor ð r

!!Þ; / ¼ 0 is the equation for the loading
surface (dissipative surface in the Li’s paper (Li, 1999)). By multiplicative decomposition, the total irre-

versible strain can be divided into two parts, that is
eirij ¼ emij þ eDij : ð2Þ
emij are the contributions of the matrix to total irreversible strain due to plastic flow. e
D
ij are the contributions

of damage due to the emergence of voids and cracks. So Eq. (1) can be rewritten as
demij þ deDij ¼ dk
o/
orij

: ð3Þ
Because the left-hand side of Eq. (3) is consisted of two separated parts, we can also divide the right-hand
side into two separated parts. Then the following equations can be derived
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/ ¼ /m þ /D ¼ 0; ð4Þ

/m ¼ 0; ð5Þ

/D ¼ 0; ð6Þ

demij ¼ dk
o/m
orij

; ð7Þ

deDij ¼ dk
o/D
orij

: ð8Þ
The implications of Eqs. (5)–(8) are very clear, which can be concluded as follows. The plastic flow of

matrix and the evolution of damage have their own loading sub-surfaces and both are subjected to the

normality rules of themselves. In above equations, Eqs. (5) and (6) are the sub-surfaces for matrix and

damage, respectively. In previous works, several authors, for example Lubarda et al. (1994), Hansen

and Schreyer (1994), Li (1999) have assumed the decomposition of loading surface. From the above

analysis, we can see, in fact it is directly resulted from the decomposition of the strain, so it is ra-

tional.
3. Frame of model

First, we should emphasize that in this paper we limit ourselves to study void type damage, which can be

described by a scalar variable, and usually defined as the fraction of void volume with respect to total

(Rajendran et al., 1989; Feng et al., 1997), i.e., D ¼ Vv=V . D is the damage variable, Vv is the volume of
voids, V is the total volume of the composite (matrix and voids). It is well accepted that the growth of void
is motivated by the tensile volumetric stress. So we generally assume the evolution of damage can be ex-
pressed as
_D ¼ _DðP ;D;X Þ; ð9Þ
where _D is the rate of D. P is the pressure (defined as negative volumetric stress). X denotes the other related
internal state variables.

On the other hand, if we assume that the plastic deformation of matrix would not cause the change of
volume, that is
emii � 0: ð10Þ

Under this assumption, the plastic deformation of matrix is motivated by the energy of shear deformation.

So from the view of energy we may generally write the function of the loading sub-surface for the matrix

plastic flow as
/m ¼ 1

1� D
� J2
2GD

� wm ¼ 0; ð11Þ
where 1
1�D �

J2
2GD
is the energy density of shear deformation in the material matrix; J2 is the second invariant

of the stress tensor; GD is the shear modulus of the composite, which is degraded by damage according to

the following equation (Mackenzie, 1950)
GD ¼ G0ð1� DÞ 1
�

� D
6B0 þ 12G0
9B0 þ 8G0

�
; ð12Þ
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where B0, G0 are the bulk and shear modulus of the undamaged matrix material, respectively. Because J2 is
independent on the selection of coordinate system, wm should be a function in terms of invariants of

internal variables, thus it may takes the following general form
wm ¼ wmðem; _em;D; T ;X Þ; ð13Þ
where em denotes the invariants of matrix plastic strain, _em, the rate of em, T is temperature and X denotes
other related internal state variables.

Modeling the material response to a define loading is to solve the problem i.e., by knowing velocity field,

stress field, strain field, damage distribution and other internal variables to calculate their corresponding

value at next time step. With the Eqs. (9) and (11), this can be easily realized. See the following:

Total strain rate ð_eijÞ:
_eij ¼
1

2

oui
oxj

�
þ ouj

oxi

�
: ð14Þ
Evolution of velocity ð _uiÞ:
_ui ¼
1

q
orij

oxj
; ð15Þ
q is the mass density of the composite.
Evolution of damage:
_D ¼ _DðP ;D;X Þ: ð9Þ
Plastic strain rate of matrix ð_emijÞ:
_emij ¼ _k
o/m
orij

; ð16Þ
where _k is determined by Eqs. (11)–(13) and (16).
Irreversible strain rate contributed by damage ð_eDijÞ:

Because
_D ¼
_Vv
V

� Vv
V 2

_V ¼ _eDii � D_eii:
so:
_eDii ¼ _Dþ D_eii

_eD11 ¼ _eD22 ¼ _eD33 ¼
1

3
ð _Dþ D_eiiÞ;

ð17Þ

_eDij ¼ 0 ði 6¼ jÞ: ð18Þ
Elastic strain rate ð_eeijÞ:
_eeij ¼ _eij � _emij � _eDij : ð19Þ
Deviatoric stress ðSijÞ:
Sij ¼ 2GDseij; ð20Þ
where seij is the deviatoric elastic strain.
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The increasing rate of specific internal energy per volume ð _EÞ:

_E ¼ Sij _emij þ P _eDii : ð21Þ
Temperature increasing rate ð _T Þ:
_T ¼ b
qCV

_E; ð22Þ
where CV is the specific heat of matrix; b is the so-called conversion coefficient, whose value was determined
to be about 0.9 empirically.

As to the pressure P , it is determined by the equation of state. We may generally express it as
P ¼ P ðq;E;DÞ: ð23Þ
From the above, we can see if we need to change the detail expressions of Eqs. (9), (13) and (23), we only

need to rewrite a few external functions in the codes. This is valuable in applications.
4. Sub-surface of matrix

The general expression for the loading sub-surface for the matrix plastic flow has been shown in above as
equation (11), in which J2 is the second invariant of the stress tensor, which is defined as
J2 ¼
1

2
SijSij ¼

1

6
½ðr11 � r22Þ2 þ ðr22 � r33Þ2 þ ðr33 � r11Þ2�: ð24Þ
For the purpose to find out the express for wm, we introduce a mapping damage-free solid of matrix
material, whose plastic strain, mass density and specific internal energy are defined to be always identical to
those of the matrix of the composite. We suppose the stress of the mapping solid ðrmapij Þ follow the
assumption made by Carroll and Holt (1972)
P ¼ Pmap
q
qm

; ð25Þ
where P is the macroscopic pressure in the composite, Pmap is the negative volumetric component of r
map
ij , q

and qm are the density of the composite and matrix, respectively. Thus we may obtain symmetrically
rmapij ¼ rij

1� D
; ð26Þ

1

1� D
� J2
2GD

¼ ð1� DÞ J
map
2

2GD
: ð27Þ
Jmap2 is the second invariant of the stress rmapij . Providing the constitutive relation for the damage-free matrix

material has been determined via the experiments of Hopkinson bar (Davies and Hunter, 1963; Kolsky,

1949)
Y ¼ Y ðep; _ep;X Þ: ð28Þ

ep, _ep, X are plastic strain, strain-rate and other concerning internal variables, respectively, Then we can
write, as usual, the loading surface of Von Mises type for the mapping solid as (Dowell, 1992).
3

2

X
i;j

½Smapij � hijðemij Þ�½S
map
ij � hijðemij Þ� ¼ Y 2ð�em; _�em;X Þ: ð29Þ
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Smapij are the components of the deviatoric stress of the mapping solid, hijðemij Þ represents the plastic strain
hardening functions. When hij � 0, it is isotropic type, otherwise it is kinematic type. �em, _�em are the effective
strain and strain rate, respectively. For simplicity we let hijðemij Þ ¼ hð�emÞ approximately, then Eq. (29) can be
rewritten as
Jmap2 ¼ 1
3
Y 2ð�em; _�em;X Þ �

3

2
h2ð�emÞ: ð30Þ
Substituting Eq. (30) into Eq. (27), we get the general function of the loading sub-surface for the matrix

plastic flow
J2 ¼ ð1� DÞ2 1
3
Y 2ð�em; _�em;X Þ

�
� 3
2
h2ð�emÞ

�
: ð31Þ
For example, if we choose Johnson–Cook model (Johnson and Cook, 1985) for the constitutive relation,

then
Y ¼ ½Aþ Bð�emÞn� 1
"

þ C ln
_�em
_e0

 !#
1

"
� T � Tr

Tm � Tr

� �M
#
; ð32Þ
where, A, B, C, n,M are material parameters. _e0 is the normalized parameter. Tr is the room temperature. Tm
is the melt temperature of the material.
5. Damage evolution

It is well known that the evolution of voids and cracks is generally divided into three aspects: nucleation,
growth and coalescence. A great number of references have been devoted to this problem, for instance,

Carroll and Holt (1972), Johnson (1981). Curran et al. (1987), Stumpf and Hackl (2003) and Wua et al.

(2003).

Bai et al. (1992, 1997, 2000), in the light of statistical mesoscopic damage mechanics, established a

fundamental equation for micro-damage evolution.
on
ot

þ
XI
i¼1

oðn � QiÞ
oqi

¼ nN � nA; ð33Þ
where n is the number density of micro-damage in phase space, t denotes time, qi are the independent
variables describing the state of micro-damages, Qi are the rate of variable qi, nN and nA are the nucleation
and annihilation rate densities of micro–damage, respectively. For voids, Eq. (33) can be simplified.
on
ot

þ oðn � _vÞ
ov

¼ nN � nA; ð34Þ
v is the volume of void.
Nowadays modeling the coalescence of voids remains a giant problem. So an effective way for dealing

with the problem is to assume that before certain critical damage Dc is reached, no coalescence occurs. After
that voids are rapidly coalesced to separate the sample. Therefore, before Dc is reached, the following
equation holds
_D ¼
_Vv
V

� Vv
V 2

_V ¼ ð _VvÞN
V

þ ð _VvÞG
V

� D_eb: ð35Þ
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ð _VvÞN is the contribution of the nucleation to the rate of increment of the total volume of voids, ð _VvÞG is that
of the growth of voids, _eb is the rate of the volume strain of the composite. Referring to the work of Curran
et al. (1987), we write the nucleation rate of voids in per matrix mass as
_nN ¼ N0 exp
Pm � Pn0

Pn

� �
Pm P Pn0

0 Pm < Pn0;
:

8<
: ð36Þ
where Pn0 is the threshold stress for void nucleation, Pn is a characteristic parameter with stress unit. N0, Pn0,
Pn are material constants. If we assume the average size of nucleated voids is also material constant, whose
radius is RN, then we get:
ð _VvÞN
V

¼
4p
3
R3NqN0 exp

Pm � Pn0
Pn

� �
Pm P Pn0

0 Pm < Pn0
:

8<
: ð37Þ
Curran et al. (1987) and Bai et al. (2000) had found, via recovered experiments, that in the process of

growth the void number distribution always fulfills a certain function, which is generally in terms of R=R0.
This must lead to the conclusion [Curran et al., 1987]
_R
R
¼

_R0
R0

¼ C; ð38Þ
where, R is the radius of void, R0 is a time-dependent parameter that characterizes the distribution, C is a
constant that is independent of R. Eq. (38) implies for every void
_v ¼ 4pR2 _R ¼ 3Cv: ð39Þ

On the other hand, we have
ð _VvÞG
V

¼ 1

V
d

dt

Z
vnðv; tÞGdv ¼

1

V

Z
_vnðv; tÞG
��

þ v
onðv; tÞG

ot
þ v

onðv; tÞG
ov

_v
�
dvþ

Z
vnðv; tÞGd _v

�
: ð40Þ
nðv; tÞG is the number density of voids after the nucleation is excluded. If we limit ourselves to study the
voids growth, Eq. (34) becomes
onðv; tÞG
ot

þ oðn � _vÞ
ov

¼ 0: ð41Þ
Solving Eqs. (39)–(41), we obtain
ð _VvÞG
V

¼ 3CD: ð42Þ
Feng et al. (1997) from the point of energy balance, had demonstrated
C ¼ Cmb
4Bmk

ðP 2m � P 2g Þ: ð43aÞ
Pg is the threshold stress for void growth, which is material constant, Cmb and Bm are the bulk sound velocity
and bulk modulus of matrix, respectively. k is the specific fracture energy. In their deduction, they had not
considered the fact that the medium around a void is also damaged. When taking this point into consid-

eration, Eq. (43a) should be modified to
C ¼ Cb
4Bmk

ðP 2m � P 2g Þð1� DÞ; ð43bÞ
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Cb is the bulk sound velocity of the composite. Furthermore, we consider Bm is degraded by damage
according to Mackenzie’s relation (Mackenzie, 1950)
Bm ¼ 4G0B0ð1� DÞ
4G0 þ 3B0D

; ð44Þ
B0, G0 are the bulk and shear modulus of the undamaged matrix material. So we finally get the damage
evolution equation.
_D ¼
4p
3
R3NqN0 exp

Pm � Pn0
Pn

� �
Pm P Pn0

0 Pm < Pn0

8<
:

9=
;þ

3Cb
4Bmk ðP 2m � P 2g ÞDð1� DÞ Pm P Pg
0 Pm < Pg

( )
� D_eb: ð45Þ
6. Equation of state

We simply divide the matrix pressure ðPmÞ into the cold part and the thermal part, for which we select
Murnaghan equation and Gruneisen equation, respectively, then
Pm ¼ B0
B0
0

qm
q0

� �B0
0

"
� 1
#
þ cE
ð1� DÞ ; ð46Þ
where, B0
0 is the derivative of B0 with respect to pressure, qm and q0 are the mass density of the matrix at

current and zero-pressure states. c is the Gruneisen ratio of the matrix material. E is the specific thermal
energy of the composite per volume. Then the pressure of the composite is calculated by Eq. (25).
7. Destabilizing factor

In order to describe the rapid destabilizing behaves of the damaged materials, which emerges when the
microvoids or microcracks are very close to be totally coalesced to separate the solid, we, similar to Feng

et al. (1997), would like to define a destabilizing factor
F ðDÞ ¼ exp
�
� D

D1

� �a�
; ð47Þ
D1 and a are two empirical constants that should be determined by trial calculations. We suppose the
moduli Bm, GD, the plastic strain hardening function hð�emÞ and the yield strength Y will be decreased quickly
by F ðDÞ after D > D1, so Eqs. (12), (31) and (44) should be revised as follows:
GD ¼ G0ð1� DÞ 1
�

� D
6B0 þ 12G0
9B0 þ 8G0

�
F ðDÞ; ð120 Þ

J2 ¼ ð1� DÞ2 1
3
Y 2ð�em; _�em;X Þ

�
� 3
2
h2ð�emÞ

�
F 2ðDÞ; ð310 Þ

Bm ¼ 4G0B0ð1� DÞ
4G0 þ 3B0D

F ðDÞ: ð440 Þ
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8. Simulation examples

We had carried out three shots of impact experiments on pure tantalum targets with a gas gun, the free

surface velocity profiles had been measured with VISAR (Barker and HollenBack, 1972). The experiments
sets are shown in Fig. 1. What we want to point out is that the projectile is consisted of two layers. The left

one (aluminium alloy) acts as the supporter for the right one (tantalum). The parameters for the three shot

experiments are given in Table 1.

The constitutive relations of the aluminium alloy and the tantalum had been measured with Hopkinson

bar technique. The relation of the aluminium alloy was fitted to J–C model (refer to Eq. (32)), and that of

the tantalum was fitted to a modified J–C model shown in Eq. (48).
Table

Param

No.

Sho

Sho

Sho

Table

Param

Mat

Alum

Tan
Y ¼ ½Aþ Bð�emÞn�
_�em
_e0

 !C

1

"
� T � Tr

Tm � Tr

� �M
#
: ð48Þ
The corresponding parameters for the constitutive relations are shown in Table 2.

In simulations, the parameters for the equation of state were determined by virtue of Hugoniot data

(Jing, 1999). And other damage-related parameters were determined by trial calculations. The trial

calculations were carried out on the experiment shot 3. Then the other two experiments of shot 2 and shot 1
two-layer 
projectile 

to VISAR 

Target of tantalum 

V

Fig. 1. The experimental sets.

1

eters for the experiments

Target

(Ta)

Left projectile

(aluminium alloy)

Right projectile

(Ta)

Impact velocity

(m/s)

Width (mm) Width (mm) Width (mm)

t 1 3.994 8 1.4511 294

t 2 4.066 8 1.631 522

t 3 4.057 8 1.452 705

2

eters for the constitutive relations of the materials

erial A (GPa) B (GPa) _e0 (s�1) Tr (K) Tm (K) C n M

inium alloy 0.31 1.13 1 300 960 0.015 0.69 0.88

talum 0.34 0.26 4 · 10�4 300 3269 0.042 0.32 0.88
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were predicted theoretically. Because the left projectile (aluminium alloy of 8 mm width) is just a supporter

for the right one, so we did not take into consideration of the damage of the left projectile in the simu-

lations. Table 3 shows the other parameters used in the three simulations. The comparisons of the free
Table 3

The parameters used in the simulations

q0 (kg/m
3) B0 (Pa) B0

0 G0 (Pa) c Cv

(J kg�1 K�1)

Tantalum 16.67· 103 1.96· 1011 4.2 6.9· 1010 1.58 0.14· 103
Aluminium alloy 2.7 · 103 7.55· 1011 4.32 2.65· 1010 1.78 0.9· 103

hð�emÞ (Pa) N0
(kg�1 s�1)

Pn0
(Pa)

Pn
(Pa)

RN
(m)

Pg
(Pa)

k
(J/m2)

D1 a Dc

0 1.0 · 1010 6.0· 108 2.0 · 108 1.0· 10�7 6 · 108 8.5· 103 0.06 4 0.2

0

Fig. 2. The comparison of the velocity profile of the free surface between the theoretical simulation and the experimental measurement

for shot 3.

Fig. 3. The comparison of the velocity profile of the free surface between the theoretical prediction and the experimental measurement

for shot 2.



Fig. 4. The comparison of the velocity profile of the free surface between the theoretical prediction and the experimental measurement

for shot 1.
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surface velocity profiles between that of calculated and that of experiments are shown from Figs. 2–4, which

show that the above model predicts experiments very well.
9. Summary

A simplified model for prediction of the dynamic damage and fracture of ductile materials has been

proposed. In doing so, we firstly succeeded to show that two separated loading sub-surfaces and the

corresponding normality rules for the matrix plastic flow and the damage evolution exist. The advantage of
the separation is that it enables us to derive a universal frame for modeling the dynamic damage and

fracture behaves of materials. After that, we introduced a mapping damage-free solid of matrix material,

and by assuming that the stress of the mapping solid follows the Carroll and Holt’s relation (Carroll and

Holt, 1972), we derived the function of the loading sub-surface for the matrix plastic flow. Next we deduced

the equation of the damage evolution, and introduced a destabilizing factor to describe the rapid desta-

bilizing behaves of materials, which occurs before the microvoids are finally coalesced. At last three shots of

experiments were simulated, and results show the model predicts the experiments very well.
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