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Abstract

A simplified model for prediction of dynamic damage and fracture of ductile material has been proposed. The plastic
flow of matrix and the void growth are dealt with separately after we show that two separated loading sub-surfaces and
corresponding normality rules for matrix and damage exist. The equation of the loading sub-surface for the matrix
plastic flow is derived by the means of introducing a mapping damage-free solid of matrix material, whose constitutive
relation is supposed to have been determined via Hopkinson bar experiments. Based on the results of recovered
experiments the law of damage evolution is phenomenally established. The model has been applied to predict some spall
experiments carried out on tantalum, and results show it predicts the experiments very well.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic damage and fracture occurs in a wide range of technologically important applications, for
examples: high-speed machining, crash-worthiness of vehicles, armor penetration, striking of dust particles
on aerospace vehicles and satellites. It has long been recognized that in the cases of dynamic loading
conditions the material behaves are different with those under static loading conditions. Under static
loading, the failure or fracture of materials was demonstrated to be the consequence of fatigue and the
propagation of pre-existed macro-scale cracks (Lawn, 1993). In contrast, dynamic failure and fracture of
materials was observed to result from the accumulation of damage that is characterized by the nucleation,
growth and coalescence of microcracks and microvoids (Seaman et al., 1976; Curran et al., 1987). So
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modeling of the response of materials under dynamic loading is, in fact, a multi-scale problem. In order to
link micro-damage, macro-deformation and the final failure of materials, Kachanov (1958) put forward the
concept of internal variable of damage, which was defined as the relative area of voids in a cross section.
The significance of this concept is that it enables us to study the mechanic properties of damaged materials
with continuum theories. In 1970s the concept was widely accepted and extended to describe the dynamic
behaves of materials under high rate loadings such as explosions and high-velocity impactions. Afterwards,
numerous models have been proposed, for example, Davision and Stevens (1972, 1973), Seaman et al.
(1976), Curran et al. (1987), Johnson (1981), Steinberg et al. (1980, 1989), Johnson and Addessio (1989),
Perzyna (1986a,b), Rajendran et al. (1989, 1991), Krajcinovic (1989, 2000), Bai et al. (1991, 1992, 1997,
2000), Wang (1997), Hansen and Schreyer (1994), Cauvin and Testa (1999), Li (2000), Clifton (2000),
Ireman et al. (2003) and Rashid et al. (2003). For review papers, one can refer to Voyiadjis et al. (2002),
Meyers (1994) and Curran et al. (1987) as examples. Although plenty of models have been proposed, it has
been found that the prediction of material response to dynamic loading is also insufficient, further works
are required.

In this paper, we will present a novel practical model for prediction of dynamic damage and fracture of
ductile materials. But prior to all, we will first show that there exist two separated loading sub-surfaces and
corresponding normality rules for the matrix plastic flow and the damage evolution. The advantage of the
separation is that it makes the frame of the model applicable for both ductile and brittle materials. In
addition it allows us to change the kinetic equations for the damage evolution and the matrix plastic flow
without a large amount of modification of the codes. Next in our paper, the frame of our model will be
presented. After that, the rate-dependent loading sub-surface for the matrix flow will be introduced and the
equation of evolution of damage will be developed. At last some examples of simulation of plate impacting
experiments will be exhibited and a summary will be given.

2. Existence of separated sub-surfaces for the matrix plastic flow and the damage evolution

In elastic—plastic mechanics, there is a basic rule, i.e., the normality rule, which is resulted from the
Drucker’s postulate (1952). In fact, for a dissipative mechanic system Li (1999) on the view of thermo-
dynamics demonstrated that there exists a general normality rule between any thermodynamic strain and
thermodynamic stress. So in the damage and plastic deformation coupled dissipative system, the following
equation holds

0¢

601»,-

del = di (1)
where de“ (i,j = 1,2,3) are the increments of the components of total irreversible strain; d4 is a positive
parameter ai (i,j = 1,2,3) are the components of stress tensor ( ¢ ); ¢ = 0 is the equation for the loading
surface (dissipative surface in the Li’s paper (Li, 1999)). By multiplicative decomposition, the total irre-
versible strain can be divided into two parts, that is

glf’. = g‘.r.‘ 4+ gD.. (2)

& are the contributions of the matrix to total irreversible strain due to plastic flow. 8 are the contributions
of damage due to the emergence of voids and cracks. So Eq. (1) can be rewritten as

o¢

0oy

dem + del = di (3)

Because the left-hand side of Eq. (3) is consisted of two separated parts, we can also divide the right-hand
side into two separated parts. Then the following equations can be derived
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¢ = ¢ +dp =0, (4)

P =0, ()

d)D = 07 (6)
m _ q; 9Pm

deff = dign. (7)

def = di%. (®)

The implications of Egs. (5)—(8) are very clear, which can be concluded as follows. The plastic flow of
matrix and the evolution of damage have their own loading sub-surfaces and both are subjected to the
normality rules of themselves. In above equations, Egs. (5) and (6) are the sub-surfaces for matrix and
damage, respectively. In previous works, several authors, for example Lubarda et al. (1994), Hansen
and Schreyer (1994), Li (1999) have assumed the decomposition of loading surface. From the above
analysis, we can see, in fact it is directly resulted from the decomposition of the strain, so it is ra-
tional.

3. Frame of model

First, we should emphasize that in this paper we limit ourselves to study void type damage, which can be
described by a scalar variable, and usually defined as the fraction of void volume with respect to total
(Rajendran et al., 1989; Feng et al., 1997), i.e., D =V, /V. D is the damage variable, V; is the volume of
voids, ¥ is the total volume of the composite (matrix and voids). It is well accepted that the growth of void
is motivated by the tensile volumetric stress. So we generally assume the evolution of damage can be ex-
pressed as

D=D(P,D,X), 9)

where D is the rate of D. P is the pressure (defined as negative volumetric stress). X denotes the other related
internal state variables.

On the other hand, if we assume that the plastic deformation of matrix would not cause the change of
volume, that is

e =0. (10)

Under this assumption, the plastic deformation of matrix is motivated by the energy of shear deformation.

So from the view of energy we may generally write the function of the loading sub-surface for the matrix
plastic flow as

1 Jr
O =1"D%3G,

where 15 x 2%) is the energy density of shear deformation in the material matrix; J, is the second invariant
of the stress tensor; Gp is the shear modulus of the composite, which is degraded by damage according to
the following equation (Mackenzie, 1950)

6B, + 12G,
9B, + 8G, /)’

Y =0, (11)

GDGO(ID)<1D (12)
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where By, Gy are the bulk and shear modulus of the undamaged matrix material, respectively. Because .J, is
independent on the selection of coordinate system, ,, should be a function in terms of invariants of
internal variables, thus it may takes the following general form

lpm:l//m(sm,ém7D,T,X), (13)

where ¢, denotes the invariants of matrix plastic strain, &, the rate of ¢, T is temperature and X denotes
other related internal state variables.

Modeling the material response to a define loading is to solve the problem i.e., by knowing velocity field,
stress field, strain field, damage distribution and other internal variables to calculate their corresponding
value at next time step. With the Egs. (9) and (11), this can be easily realized. See the following:

Total strain rate (&;):

_— , 14
&y 2 <6xj + 6x,- ) ( )
Evolution of velocity (i;):
1 60'1*/'
—— 15
=, (15)

p is the mass density of the composite.
Evolution of damage:

D =D(P,D,X). 9)
Plastic strain rate of matrix (&}):
. . 0¢
i = i, (16)
7 oy

where 2 is determined by Egs. (11)—(13) and (16).
Irreversible strain rate contributed by damage (83)

Because
Voov? "

so:

é? = D+ Diy;

D .D . 1 - . (17)

E =& =iy = g(D—i-Ds,-,-),

g =0 (i#)). (18)
Elastic strain rate (&):

8 =y — &0 — D, (19)
Deviatoric stress (S;;):

Sij = 2GDT?/-, (20)

where rfj is the deviatoric elastic strain.
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The increasing rate of specific internal energy per volume (E):

E = Syl + PiP. (21)

J%ij

Temperature increasing rate (7):

N
T=—E, 22
pCV ( )
where Cy is the specific heat of matrix; f§ is the so-called conversion coefficient, whose value was determined
to be about 0.9 empirically.
As to the pressure P, it is determined by the equation of state. We may generally express it as

P = P(p,E, D). (23)

From the above, we can see if we need to change the detail expressions of Egs. (9), (13) and (23), we only
need to rewrite a few external functions in the codes. This is valuable in applications.

4. Sub-surface of matrix

The general expression for the loading sub-surface for the matrix plastic flow has been shown in above as
equation (11), in which J; is the second invariant of the stress tensor, which is defined as

Sy = L8, =1 ? ? ? 24

2= 5909 *6[(011 —0n) + (0622 —033)" + (033 —on1) 7). (24)

For the purpose to find out the express for i, we introduce a mapping damage-free solid of matrix

material, whose plastic strain, mass density and specific internal energy are defined to be always identical to

those of the matrix of the composite. We suppose the stress of the mapping solid (af-}?ap) follow the

assumption made by Carroll and Holt (1972)

P =Py, (25)

where P is the macroscopic pressure in the composite, Py, is the negative volumetric component of g, p

and p,, are the density of the composite and matrix, respectively. Thus we may obtain symmetrically

. G
oy’ = i-D — o (26)
1 J Jyp
2 (1-D)2—.
1-D 2Gp 2Gp
J,"*" is the second invariant of the stress ¢};*". Providing the constitutive relation for the damage-free matrix

material has been determined via the experiments of Hopkinson bar (Davies and Hunter, 1963; Kolsky,
1949)

Y = ¥ (e, ip, X). (28)

(27)

&p, &, X are plastic strain, strain-rate and other concerning internal variables, respectively, Then we can
write, as usual, the loading surface of Von Mises type for the mapping solid as (Dowell, 1992).

3 ma m maj m — .
S IS = hy(eISE = ()] = (G i, ). (29)
ij
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S;j’-‘ap are the components of the deviatoric stress of the mapping solid, h,,(,sg‘) represents the plastic strain
hardening functions. When #;; = 0, it is isotropic type, otherwise it is kinematic type. &, &, are the effective
strain and strain rate, respectively. For simplicity we let 4;(¢}) = (ém) approximately, then Eq. (29) can be
rewritten as
map 1 2(= = 3 2=
J :§Y (Emy &m, X) —Eh (&m)- (30)

Substituting Eq. (30) into Eq. (27), we get the general function of the loading sub-surface for the matrix
plastic flow

e = (1= DF [ § o X) = 37 G1)
For example, if we choose Johnson—Cook model (Johnson and Cook, 1985) for the constitutive relation,
then
3 T—T,\"
Y =[4+B(en)"]|1 In| = 1— d 2
A+ B(&n)' +Cn<é0>H (+=%) ] (32)

where, 4, B, C, n, M are material parameters. &, is the normalized parameter. 7; is the room temperature. 7,
is the melt temperature of the material.

5. Damage evolution

It is well known that the evolution of voids and cracks is generally divided into three aspects: nucleation,
growth and coalescence. A great number of references have been devoted to this problem, for instance,
Carroll and Holt (1972), Johnson (1981). Curran et al. (1987), Stumpf and Hackl (2003) and Wua et al.
(2003).

Bai et al. (1992, 1997, 2000), in the light of statistical mesoscopic damage mechanics, established a
fundamental equation for micro-damage evolution.

on < 0o(n-0)
E + lzzl: aqi = NN — N, (33)

where #n is the number density of micro-damage in phase space, ¢ denotes time, ¢g; are the independent
variables describing the state of micro-damages, Q; are the rate of variable ¢;, ny and n, are the nucleation
and annihilation rate densities of micro-damage, respectively. For voids, Eq. (33) can be simplified.

on  O(n-v)
E—l— 30 =N T (34)

v is the volume of void.
Nowadays modeling the coalescence of voids remains a giant problem. So an effective way for dealing
with the problem is to assume that before certain critical damage D, is reached, no coalescence occurs. After
that voids are rapidly coalesced to separate the sample. Therefore, before D, is reached, the following

equation holds
o Voo (Mn, (Kg

:———V:
Voov? Vv + V

— Di. (35)



Z. Lin et al. | International Journal of Solids and Structures 41 (2004) 7063-7074 7069

(¥4)y 1s the contribution of the nucleation to the rate of increment of the total volume of voids, (7;)g is that
of the growth of voids, &, is the rate of the volume strain of the composite. Referring to the work of Curran
et al. (1987), we write the nucleation rate of voids in per matrix mass as

Pm_PnO

iin = N°GXP<T> P> Foo (36)
Pm<PnOa

where P, is the threshold stress for void nucleation, P, is a characteristic parameter with stress unit. Ny, Py,
P, are material constants. If we assume the average size of nucleated voids is also material constant, whose
radius is Ry, then we get:

. 4r P, — P,
(Vo)n _ — R pNy exp <PO) Pn =P

3
4 0 P, < Py

(37)

Curran et al. (1987) and Bai et al. (2000) had found, via recovered experiments, that in the process of
growth the void number distribution always fulfills a certain function, which is generally in terms of R/R,.
This must lead to the conclusion [Curran et al., 1987]

R Ry

R Ry,
where, R is the radius of void, R, is a time-dependent parameter that characterizes the distribution, C is a
constant that is independent of R. Eq. (38) implies for every void

o = 4nR*R = 3Cv. (39)
On the other hand, we have

(V;)G:lV% un(v,t)Gdu:lV{/ [im(v,t)G+va"(g;%+van(g;t)%}dw/vn(v,t)gdb} (40)

C, (38)

n(v,t) is the number density of voids after the nucleation is excluded. If we limit ourselves to study the
voids growth, Eq. (34) becomes

on(v, 1), n o(n-0)

ot o (41)
Solving Egs. (39)—(41), we obtain
% = 3CD. (42)

Feng et al. (1997) from the point of energy balance, had demonstrated
_ G
4B

P, is the threshold stress for void growth, which is material constant, C* and B, are the bulk sound velocity

and bulk modulus of matrix, respectively. 4 is the specific fracture energy. In their deduction, they had not

considered the fact that the medium around a void is also damaged. When taking this point into consid-
eration, Eq. (43a) should be modified to

Gy
4B, A

(Py—P). (43a)

C:

(Pr—P)(1-D), (43b)
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Cp is the bulk sound velocity of the composite. Furthermore, we consider B, is degraded by damage
according to Mackenzie’s relation (Mackenzie, 1950)
__4GBy(1 - D)
" 4Gy +3ByD "’
By, Gy are the bulk and shear modulus of the undamaged matrix material. So we finally get the damage
evolution equation.

(44)

4n P, — Py 3¢

) T RNexp (20 ) PL Ry (P2 = P2)D(1 = D) Py > P, :

p=1{ 73 Oexp( P, ) 0 b Jam (P = F)D ) b —Déy.  (45)
0 P, < Py 0 Pm<Pg

6. Equation of state

We simply divide the matrix pressure (P,) into the cold part and the thermal part, for which we select
Murnaghan equation and Gruneisen equation, respectively, then

where, B is the derivative of B, with respect to pressure, p,, and p, are the mass density of the matrix at
current and zero-pressure states. 7 is the Gruneisen ratio of the matrix material. £ is the specific thermal
energy of the composite per volume. Then the pressure of the composite is calculated by Eq. (25).

7. Destabilizing factor

In order to describe the rapid destabilizing behaves of the damaged materials, which emerges when the
microvoids or microcracks are very close to be totally coalesced to separate the solid, we, similar to Feng
et al. (1997), would like to define a destabilizing factor

F(D):exp[—(D%)x], (47)

D; and o are two empirical constants that should be determined by trial calculations. We suppose the
moduli B,,, Gp, the plastic strain hardening function /() and the yield strength Y will be decreased quickly
by F(D) after D > Dy, so Egs. (12), (31) and (44) should be revised as follows:

Gp = Go(1 D)<1 - DW) (D), (12)
e = (1= D [ 37t X) = 30| P20, (1)
B, :wF(D). (44')

4Gy + 3ByD



Z. Lin et al. | International Journal of Solids and Structures 41 (2004) 7063-7074 7071

8. Simulation examples

We had carried out three shots of impact experiments on pure tantalum targets with a gas gun, the free
surface velocity profiles had been measured with VISAR (Barker and HollenBack, 1972). The experiments
sets are shown in Fig. 1. What we want to point out is that the projectile is consisted of two layers. The left
one (aluminium alloy) acts as the supporter for the right one (tantalum). The parameters for the three shot
experiments are given in Table 1.

The constitutive relations of the aluminium alloy and the tantalum had been measured with Hopkinson
bar technique. The relation of the aluminium alloy was fitted to J-C model (refer to Eq. (32)), and that of
the tantalum was fitted to a modified J-C model shown in Eq. (48).

Y = 4 +B(sm)"]<i_:)cl1_ (;_TT)M] (48)

The corresponding parameters for the constitutive relations are shown in Table 2.

In simulations, the parameters for the equation of state were determined by virtue of Hugoniot data
(Jing, 1999). And other damage-related parameters were determined by trial calculations. The trial
calculations were carried out on the experiment shot 3. Then the other two experiments of shot 2 and shot 1

two-layer
proj ecat>il| e Target of tantalum
N 4+
—» toVISAR
— » V
Fig. 1. The experimental sets.
Table 1
Parameters for the experiments
No. Target Left projectile Right projectile Impact velocity
(Ta) (aluminium alloy) (Ta) (m/s)
Width (mm) Width (mm) Width (mm)
Shot 1 3.994 8 1.4511 294
Shot 2 4.066 8 1.631 522
Shot 3 4.057 8 1.452 705
Table 2
Parameters for the constitutive relations of the materials
Material A (GPa) B (GPa) & (s7h T. (K) T (K) C n M
Aluminium alloy  0.31 1.13 1 300 960 0.015 0.69 0.88

Tantalum 0.34 0.26 4% 10~ 300 3269 0.042 0.32 0.88




7072

Z. Lin et al. | International Journal of Solids and Structures 41 (2004) 7063-7074

were predicted theoretically. Because the left projectile (aluminium alloy of 8 mm width) is just a supporter
for the right one, so we did not take into consideration of the damage of the left projectile in the simu-
lations. Table 3 shows the other parameters used in the three simulations. The comparisons of the free

Table 3
The parameters used in the simulations
po (kg/m®) By (Pa) By Gy (Pa) ¥ G
(kg 'K™)
Tantalum 16.67x10° 1.96x 10" 4.2 6.9x10'° 1.58 0.14x 10
Aluminium alloy 2.7x10°  7.55x 10" 4.32 2.65x 10 1.78 0.9x10°
h(em) (Pa) No Puo P, Rn P, Y D D,
(kg™'s™)  (Pa) (Pa) (m) (Pa) (J/m?)
0 1.0x10"  6.0x 108 2.0x 108 1.0x1077  6x10® 8.5x10° 0.06 0.2
0
800
700 |
600 -
500 |
400 | :
= (T S e, experimental
E 300 simulated
o
200
Ta
100 impact velocity=705m/s
0
-100 1 PR |

1.5 2.0

t(us)

2.5

Fig. 2. The comparison of the velocity profile of the free surface between the theoretical simulation and the experimental measurement

for shot 3.

U(mi/s)

----- experimental
calculated

Ta

impact velocity=522m/s

1.5 20 25

t(us)

3.0

Fig. 3. The comparison of the velocity profile of the free surface between the theoretical prediction and the experimental measurement

for shot 2.
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350
F Ta

- “x.,impact velocity=294m/s

250
200 [

150 |

U(m/s)

100 |

‘‘‘‘‘ experimental
—— calculated

50 [

0

_50: " " 1 i " " L 1

t(us)

Fig. 4. The comparison of the velocity profile of the free surface between the theoretical prediction and the experimental measurement
for shot 1.

surface velocity profiles between that of calculated and that of experiments are shown from Figs. 2-4, which
show that the above model predicts experiments very well.

9. Summary

A simplified model for prediction of the dynamic damage and fracture of ductile materials has been
proposed. In doing so, we firstly succeeded to show that two separated loading sub-surfaces and the
corresponding normality rules for the matrix plastic flow and the damage evolution exist. The advantage of
the separation is that it enables us to derive a universal frame for modeling the dynamic damage and
fracture behaves of materials. After that, we introduced a mapping damage-free solid of matrix material,
and by assuming that the stress of the mapping solid follows the Carroll and Holt’s relation (Carroll and
Holt, 1972), we derived the function of the loading sub-surface for the matrix plastic flow. Next we deduced
the equation of the damage evolution, and introduced a destabilizing factor to describe the rapid desta-
bilizing behaves of materials, which occurs before the microvoids are finally coalesced. At last three shots of
experiments were simulated, and results show the model predicts the experiments very well.
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